Time Series: Theory and Methods

Time Series: Theory and Methods

This paperback edition is a reprint of the 1991 edition. Time Series: Theory and Methods is a systematic account of linear time series models and their application to the modeling and prediction of data collected sequentially in time. The aim is to provide specific techniques for handling data and at the same time to provide a thorough understanding of the mathematical basis for the techniques. Both time and frequency domain methods are discussed, but the book is written in such a way that either approach could be emphasized. The book is intended to be a text for graduate students in statistics, mathematics, engineering, and the natural or social sciences. It contains substantial chapters on multivariate series and state-space models (including applications of the Kalman recursions to missing-value problems) and shorter accounts of special topics including long-range dependence, infinite variance processes, and nonlinear models. Most of the programs used in the book are available in the modeling package ITSM2000, the student version of which can be downloaded from http://www.stat.colostate.edu/~pjbrock/student06.

Introduction to Time Series and Forecasting

Introduction to Time Series and Forecasting

This book is aimed at the reader who wishes to gain a working knowledge of time series and forecasting methods as applied to economics, engineering and the natural and social sciences. It assumes knowledge only of basic calculus, matrix algebra and elementary statistics. This third edition contains detailed instructions for the use of the professional version of the Windows-based computer package ITSM2000, now available as a free download from the Springer Extras website. The logic and tools of time series model-building are developed in detail. Numerous exercises are included and the software can be used to analyze and forecast data sets of the user's own choosing. The book can also be used in conjunction with other time series packages such as those included in R. The programs in ITSM2000 however are menu-driven and can be used with minimal investment of time in the computational details. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Many additional special topics are also covered. New to this edition: A chapter devoted to Financial Time Series Introductions to Brownian motion, Lévy processes and Itô calculus An expanded section on continuous-time ARMA processes

Long-Memory Time Series

Theory and Methods

Long-Memory Time Series

A self-contained, contemporary treatment of the analysis of long-range dependent data Long-Memory Time Series: Theory and Methods provides an overview of the theory and methods developed to deal with long-range dependent data and describes the applications of these methodologies to real-life time series. Systematically organized, it begins with the foundational essentials, proceeds to the analysis of methodological aspects (Estimation Methods, Asymptotic Theory, Heteroskedastic Models, Transformations, Bayesian Methods, and Prediction), and then extends these techniques to more complex data structures. To facilitate understanding, the book: Assumes a basic knowledge of calculus and linear algebra and explains the more advanced statistical and mathematical concepts Features numerous examples that accelerate understanding and illustrate various consequences of the theoretical results Proves all theoretical results (theorems, lemmas, corollaries, etc.) or refers readers to resources with further demonstration Includes detailed analyses of computational aspects related to the implementation of the methodologies described, including algorithm efficiency, arithmetic complexity, CPU times, and more Includes proposed problems at the end of each chapter to help readers solidify their understanding and practice their skills A valuable real-world reference for researchers and practitioners in time series analysis, economerics, finance, and related fields, this book is also excellent for a beginning graduate-level course in long-memory processes or as a supplemental textbook for those studying advanced statistics, mathematics, economics, finance, engineering, or physics. A companion Web site is available for readers to access the S-Plus and R data sets used within the text.

ITSM for Windows

A User’s Guide to Time Series Modelling and Forecasting

ITSM for Windows

The analysis of time series data is an important aspect of data analysis across a wide range of disciplines, including statistics, mathematics, business, engineering, and the natural and social sciences. This package provides both an introduction to time series analysis and an easy-to-use version of a well-known time series computing package called Interactive Time Series Modelling. The programs in the package are intended as a supplement to the text Time Series: Theory and Methods, 2nd edition, also by Peter J. Brockwell and Richard A. Davis. Many researchers and professionals will appreciate this straightforward approach enabling them to run desk-top analyses of their time series data. Amongst the many facilities available are tools for: ARIMA modelling, smoothing, spectral estimation, multivariate autoregressive modelling, transfer-function modelling, forecasting, and long-memory modelling. This version is designed to run under Microsoft Windows 3.1 or later. It comes with two diskettes: one suitable for less powerful machines (IBM PC 286 or later with 540K available RAM and 1.1 MB of hard disk space) and one for more powerful machines (IBM PC 386 or later with 8MB of RAM and 2.6 MB of hard disk space available).

Time Series Analysis Univariate and Multivariate Methods

Time Series Analysis Univariate and Multivariate Methods

With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.

Stochastic Processes

Theory and Methods

Stochastic Processes

J. Neyman, one of the pioneers in laying the foundations of modern statistical theory, stressed the importance of stochastic processes in a paper written in 1960 in the following terms: Currently in the period of dynamic indeterminism in science, there is hardly a serious piece of research, if treated realistically, does not involve operations on stochastic processes. Arising from the need to solve practical problems, several major advances have taken place in the theory of stochastic processes and their applications. Books by Doob (1953; J. Wiley and Sons), Feller (1957, 1966; J. Wiley and Sons) and Loeve (1960; D. van Nostrand and Col., Inc.) among others, have created growing awareness and interest in the use of stochastic processes in scientific and technological studies.The literature on stochastic processes is very extensive and is distributed in several books and journals.

Nonlinear Time Series

Theory, Methods and Applications with R Examples

Nonlinear Time Series

Designed for researchers and students, Nonlinear Times Series: Theory, Methods and Applications with R Examples familiarizes readers with the principles behind nonlinear time series models—without overwhelming them with difficult mathematical developments. By focusing on basic principles and theory, the authors give readers the background required to craft their own stochastic models, numerical methods, and software. They will also be able to assess the advantages and disadvantages of different approaches, and thus be able to choose the right methods for their purposes. The first part can be seen as a crash course on "classical" time series, with a special emphasis on linear state space models and detailed coverage of random coefficient autoregressions, both ARCH and GARCH models. The second part introduces Markov chains, discussing stability, the existence of a stationary distribution, ergodicity, limit theorems, and statistical inference. The book concludes with a self-contained account on nonlinear state space and sequential Monte Carlo methods. An elementary introduction to nonlinear state space modeling and sequential Monte Carlo, this section touches on current topics, from the theory of statistical inference to advanced computational methods. The book can be used as a support to an advanced course on these methods, or an introduction to this field before studying more specialized texts. Several chapters highlight recent developments such as explicit rate of convergence of Markov chains and sequential Monte Carlo techniques. And while the chapters are organized in a logical progression, the three parts can be studied independently. Statistics is not a spectator sport, so the book contains more than 200 exercises to challenge readers. These problems strengthen intellectual muscles strained by the introduction of new theory and go on to extend the theory in significant ways. The book helps readers hone their skills in nonlinear time series analysis and their applications.

Wavelet Methods for Time Series Analysis

Wavelet Methods for Time Series Analysis

This introduction to wavelet analysis 'from the ground level and up', and to wavelet-based statistical analysis of time series focuses on practical discrete time techniques, with detailed descriptions of the theory and algorithms needed to understand and implement the discrete wavelet transforms. Numerous examples illustrate the techniques on actual time series. The many embedded exercises - with complete solutions provided in the Appendix - allow readers to use the book for self-guided study. Additional exercises can be used in a classroom setting. A Web site offers access to the time series and wavelets used in the book, as well as information on accessing software in S-Plus and other languages. Students and researchers wishing to use wavelet methods to analyze time series will find this book essential.

Diagnostic Checks in Time Series

Diagnostic Checks in Time Series

Diagnostic checking is an important step in the modeling process. But while the literature on diagnostic checks is quite extensive and many texts on time series modeling are available, it still remains difficult to find a book that adequately covers methods for performing diagnostic checks. Diagnostic Checks in Time Series helps to fill that gap. Author Wai Keung Li--one of the world's top authorities in time series modeling--concentrates on diagnostic checks for stationary time series and covers a range of different linear and nonlinear models, from various ARMA, threshold type, and bilinear models to conditional non-Gaussian and autoregressive heteroscedasticity (ARCH) models. Because of its broad applicability, the portmanteau goodness-of-fit test receives particular attention, as does the score test. Unlike most treatments, the author's approach is a practical one, and he looks at each topic through the eyes of a model builder rather than a mathematical statistician. This book brings together the widely scattered literature on the subject, and with clear explanations and focus on applications, it guides readers through the final stages of their modeling efforts. With Diagnostic Checks in Time Series, you will understand the relative merits of the models discussed, know how to estimate these models, and often find ways to improve a model.