Fundamentals of Power System Economics

Fundamentals of Power System Economics

A new edition of the classic text explaining the fundamentals of competitive electricity markets—now updated to reflect the evolution of these markets and the large scale deployment of generation from renewable energy sources The introduction of competition in the generation and retail of electricity has changed the ways in which power systems function. The design and operation of successful competitive electricity markets requires a sound understanding of both power systems engineering and underlying economic principles of a competitive market. This extensively revised and updated edition of the classic text on power system economics explains the basic economic principles underpinning the design, operation, and planning of modern power systems in a competitive environment. It also discusses the economics of renewable energy sources in electricity markets, the provision of incentives, and the cost of integrating renewables in the grid. Fundamentals of Power System Economics, Second Edition looks at the fundamental concepts of microeconomics, organization, and operation of electricity markets, market participants’ strategies, operational reliability and ancillary services, network congestion and related LMP and transmission rights, transmission investment, and generation investment. It also expands the chapter on generation investments—discussing capacity mechanisms in more detail and the need for capacity markets aimed at ensuring that enough generation capacity is available when renewable energy sources are not producing due to lack of wind or sun. Retains the highly praised first edition’s focus and philosophy on the principles of competitive electricity markets and application of basic economics to power system operating and planning Includes an expanded chapter on power system operation that addresses the challenges stemming from the integration of renewable energy sources Addresses the need for additional flexibility and its provision by conventional generation, demand response, and energy storage Discusses the effects of the increased uncertainty on system operation Broadens its coverage of transmission investment and generation investment Updates end-of-chapter problems and accompanying solutions manual Fundamentals of Power System Economics, Second Edition is essential reading for graduate and undergraduate students, professors, practicing engineers, as well as all others who want to understand how economics and power system engineering interact.

Power System Economics

Designing Markets for Electricity

Power System Economics

The first systematic presentation of electricity market design-from the basics to the cutting edge. Unique in its breadth and depth. Using examples and focusing on fundamentals, it clarifies long misunderstood issues-such as why today's markets are inherently unstable. The book reveals for the first time how uncoordinated regulatory and engineering policies cause boom-bust investment swings and provides guidance and tools for fixing broken markets. It also takes a provocative look at the operation of pools and power exchanges. * Part 1 introduces key economic, engineering and market design concepts. * Part 2 links short-run reliability policies with long-run investment problems. * Part 3 examines classic designs for day-ahead and real-time markets. * Part 4 covers market power, and * Part 5 covers locational pricing, transmission right and pricing losses. The non-technical introductions to all chapters allow easy access to the most difficult topics. Steering an independent course between ideological extremes, it provides background material for engineers, economists, regulators and lawyers alike. With nearly 250 figures, tables, side bars, and concisely-stated results and fallacies, the 44 chapters cover such essential topics as auctions, fixed-cost recovery from marginal cost, pricing fallacies, real and reactive power flows, Cournot competition, installed capacity markets, HHIs, the Lerner index and price caps. About the Author Steven Stoft has a Ph.D. in economics (U.C. Berkeley) as well as a background in physics, math, engineering, and astronomy. He spent a year inside FERC and now consults for PJM, California and private generators. Learn more at www.stoft.com.

Electricity Markets and Power System Economics

Electricity Markets and Power System Economics

After the first power plant in history was commissioned for commercial operation by Thomas Edison on Pearl Street in New York in 1882, electricity was sold as a consumer product at market prices. After a period of rapid development, electricity had become such a fundamental product that regulation was believed to be necessary. Since then, the power industry had been considered a natural monopoly and undergone periods of tight regulation. Deregulation started in the early 1980s and as a result, most developed countries run their power industries using a market approach. With the theories and rules of electricity markets developing rapidly, it is often difficult for beginners to start learning and difficult for those in the field to keep up. Bringing together information previously scattered among various journals and scholarly articles, Electricity Markets and Power System Economics provides a comprehensive overview of the current state of development in the electricity market. It introduces the fundamental principles of power system operation so that even those with a basic understanding can benefit from the book. The book includes a series of consistent mathematical models of market operation of power systems, and original cases with solutions. Systematically describing the basic building blocks of electricity market theory, the book provides a guide to underlying theory and mainstream market rules.

Power System Economics

The Nordic Electricity Market

Power System Economics

This book is written as a textbook for students of engineering at the Norwegian University of Science and Technology (NTNU). It is designed for the Power Markets course which is part of the Energy and environment masters programme and the recently established international MSc programme in Electric Power Engineering. As the title indicates, it deals with both power system economics in general and the practical implementation and experience from the Nordic market. Some of the subjects covered: Restructuring/deregulation of the power supply system; Grid access including tariffs and congestion management; Generation planning; Market modelling; Ancillary services; Regulation of grid monopolies. Although it is written primarily as a textbook for students, readers outside the universities may also find the book interesting. It deals with problems that have been subject of considerable attention in the power sector for some years and it addresses issues that are still relevant and important.

Power Systems Restructuring

Engineering and Economics

Power Systems Restructuring

The writing of this book was largely motivated by the ongoing unprecedented world-wide restructuring of the power industry. This move away from the traditional monopolies and toward greater competition, in the form of increased numbers of independent power producers and an unbundling of the main services that were until now provided by the utilities, has been building up for over a decade. This change was driven by the large disparities in electricity tariffs across regions, by technological developments that make it possible for small producers to compete with large ones, and by a widely held belief that competition will be beneficial in a broad sense. All of this together with the political will to push through the necessary legislative reforms has created a climate conducive to restructuring in the electric power industry. Consequently, since the beginning of this decade dramatic changes have taken place in an ever-increasing list of nations, from the pioneering moves in the United Kingdom, Chile and Scandinavia, to today's highly fluid power industry throughout North and South America, as well as in the European Community. The drive to restructure and take advantage of the potential economic benefits has, in our view, forced the industry to take actions and make choices at a hurried pace, without the usual deliberation and thorough analysis of possible implications. We must admit that to speak of "the industry" at this juncture is perhaps disingenuous, even misleading.

Large-Scale Solar Power Systems

Construction and Economics

Large-Scale Solar Power Systems

This book is a comprehensive discussion and economic analysis of large-scale solar power systems, specifically referencing critical issues related to design construction and financing. The book provides practical design, installation, and financing guidelines for large-scale commercial and industrial solar power projects. Engineering design and construction methodologies as well as economic analysis provide a step-by-step walk-through of all aspects of solar power systems. Design methodologies outline the specific requirements of solar and electrical design and construction documentation in meticulous detail, which can readily be applied to ground mount, roof mount, building integrated (BIPV), and carport-type solar power projects. In view of the importance of solar power systems as a viable present and future energy resource, the book includes a dedicated chapter on smart grid transmission and large-scale energy storage systems.

Power Generation, Operation, and Control

Power Generation, Operation, and Control

A thoroughly revised new edition of the definitive work on power systems best practices In this eagerly awaited new edition, Power Generation, Operation, and Control continues to provide engineers and academics with a complete picture of the techniques used in modern power system operation. Long recognized as the standard reference in the field, the book has been thoroughly updated to reflect the enormous changes that have taken place in the electric power industry since the Second Edition was published seventeen years ago. With an emphasis on both the engineering and economic aspects of energy management, the Third Edition introduces central "terminal" characteristics for thermal and hydroelectric power generation systems, along with new optimization techniques for tackling real-world operating problems. Readers will find a range of algorithms and methods for performing integrated economic, network, and generating system analysis, as well as modern methods for power system analysis, operation, and control. Special features include: State-of-the-art topics such as market simulation, multiple market analysis, contract and market bidding, and other business topics Chapters on generation with limited energy supply, power flow control, power system security, and more An introduction to regulatory issues, renewable energy, and other evolving topics New worked examples and end-of-chapter problems A companion website with additional materials, including MATLAB programs and power system sample data sets