Data Mining Techniques

For Marketing, Sales, and Customer Relationship Management

Data Mining Techniques

Many companies have invested in building large databases and data warehouses capable of storing vast amounts of information. This book offers business, sales and marketing managers a practical guide to accessing such information.

Data Mining Techniques

Data Mining Techniques

This Book Addresses All The Major And Latest Techniques Of Data Mining And Data Warehousing. It Deals With The Latest Algorithms For Discussing Association Rules, Decision Trees, Clustering, Neural Networks And Genetic Algorithms. The Book Also Discusses The Mining Of Web Data, Temporal And Text Data. It Can Serve As A Textbook For Students Of Compuer Science, Mathematical Science And Management Science, And Also Be An Excellent Handbook For Researchers In The Area Of Data Mining And Warehousing.

Data Mining Techniques

For Marketing, Sales, and Customer Relationship Management

Data Mining Techniques

The leading introductory book on data mining, fully updated andrevised! When Berry and Linoff wrote the first edition of Data MiningTechniques in the late 1990s, data mining was just starting tomove out of the lab and into the office and has since grown tobecome an indispensable tool of modern business. This newedition—more than 50% new and revised— is asignificant update from the previous one, and shows you how toharness the newest data mining methods and techniques to solvecommon business problems. The duo of unparalleled authors shareinvaluable advice for improving response rates to direct marketingcampaigns, identifying new customer segments, and estimating creditrisk. In addition, they cover more advanced topics such aspreparing data for analysis and creating the necessaryinfrastructure for data mining at your company. Features significant updates since the previous edition andupdates you on best practices for using data mining methods andtechniques for solving common business problems Covers a new data mining technique in every chapter along withclear, concise explanations on how to apply each techniqueimmediately Touches on core data mining techniques, including decisiontrees, neural networks, collaborative filtering, association rules,link analysis, survival analysis, and more Provides best practices for performing data mining using simpletools such as Excel Data Mining Techniques, Third Edition covers a new datamining technique with each successive chapter and then demonstrateshow you can apply that technique for improved marketing, sales, andcustomer support to get immediate results.

Advanced Data Mining Techniques

Advanced Data Mining Techniques

This book covers the fundamental concepts of data mining, to demonstrate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. The book is organized in three parts. Part I introduces concepts. Part II describes and demonstrates basic data mining algorithms. It also contains chapters on a number of different techniques often used in data mining. Part III focuses on business applications of data mining.

Data Mining Techniques and Applications

An Introduction

Data Mining Techniques and Applications

This concise and approachable introduction to data mining selects a mixture of data mining techniques originating from statistics, machine learning and databases, and presents them in an algorithmic approach. Aimed primarily at undergraduate readers, it presents not only the fundamental principles and concepts of the subject in an easy-to-understand way, but also hands on, practical instruction on data mining techniques, that readers can put into practice as they go along using the freely downloadable Weka toolkit. Author Hongbo Du shares his years of commercial, as well as research-based, experience in the field through extensive examples and real-world case studies, highlighting how data mining solutions provided by software tools are used in practical problem solving. Covering not only traditional areas of data mining such as association, clustering and classification, this text also explains topics such as data warehousing, online-analytic processing, and text mining.

Data Warehousing and Data Mining Techniques for Cyber Security

Data Warehousing and Data Mining Techniques for Cyber Security

The application of data warehousing and data mining techniques to computer security is an important emerging area, as information processing and internet accessibility costs decline and more and more organizations become vulnerable to cyber attacks. These security breaches include attacks on single computers, computer networks, wireless networks, databases, or authentication compromises. This book describes data warehousing and data mining techniques that can be used to detect attacks. It is designed to be a useful handbook for practitioners and researchers in industry, and is also suitable as a text for advanced-level students in computer science.

Intelligent Data Mining

Techniques and Applications

Intelligent Data Mining

"Intelligent Data Mining – Techniques and Applications" is an organized edited collection of contributed chapters covering basic knowledge for intelligent systems and data mining, applications in economic and management, industrial engineering and other related industrial applications. The main objective of this book is to gather a number of peer-reviewed high quality contributions in the relevant topic areas. The focus is especially on those chapters that provide theoretical/analytical solutions to the problems of real interest in intelligent techniques possibly combined with other traditional tools, for data mining and the corresponding applications to engineers and managers of different industrial sectors. Academic and applied researchers and research students working on data mining can also directly benefit from this book.

Data Mining Techniques in CRM

Inside Customer Segmentation

Data Mining Techniques in CRM

This is an applied handbook for the application of data mining techniques in the CRM framework. It combines a technical and a business perspective to cover the needs of business users who are looking for a practical guide on data mining. It focuses on Customer Segmentation and presents guidelines for the development of actionable segmentation schemes. By using non-technical language it guides readers through all the phases of the data mining process.

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data